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Nonlinear baroclinic instability of a continuous zonal 
flow of viscous fluid 

By P. G. DRAZIN 
School of Mathematics, University of Bristol 
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Nonlinear instability of a zonal flow of slightly viscous Boussinesq fluid in 
a rapidly rotating frame is studied mathematically by the method of normal 
mode cascade, the flow being along a rectangular channel with horizontal and 
vertical rigid walls. Viscosity is represented approximately by supposing that 
its only effects occur in Ekman layers near the top and bottom walls of the 
channel, after the linear model of Barcilon. Self-interaction of one slightly 
unstable mode is found to lead to equilibration with supercritical instability. 
Also, interactions of two slightly unstable modes plausibly lead to equilibration. 
These results are related to the literature of experiments on differentially heated, 
rotating annuli. 

1. Introduction 
Recently the author (Drazin 1970) took Eady’s model of baroclinic instability 

of a shear flow of inviscid non-conducting Boussinesq fluid in a rapidly rotating 
frame and extended it by including nonlinearity. Applications of the results to 
instability of the westerly winds and to experiments on a differentially heated, 
rotating annulus of liquid were limited by the absence of viscosity or another 
dissipative mechanism in the model. However, there is no entirely satisfactory 
treatment of linear baroclinic instability of viscous fluid for which the dis- 
turbance and the flow itself are exact solutions of the equations of motion and 
the boundary conditions. “In order to reduce the mathematical complexity’) 
Barcilon (1964, p. 293) made “several simplifications” to get a tractable model of 
linear baroclinic instability of viscous fluid, but they seemed to prevent “direct 
comparison between. . .results and the experiments”. Assuming that the 
kinematic viscosity and thermal diffusivity were small and of the same order of 
magnitude, he included Ekman layers on the rigid top and bottom of the square 
channel of his model, but neglected the buoyancy layers on the vertical side walls 
in order to simplify the mathematics. In  this way he let thermal diffusivity drop 
entirely out of his model. In  spite of these assumptions and of Barcilon’s dis- 
claimer, after a simple generalization of his results for basic flows along channels 
of rectangular instead of square section, his theory agrees quite well with ex- 
periments on a differentially heated, rotating annulus with a free surface and is, 
indeed, comparable to other linear theories (Fowlis & Hide 1965; Kaiser 1970, 
figure 4). Barcilon’s linear theory is also relatively simple, so it seems suitable 
to begin a study of nonlinear baroclinic instability of real fluid. 
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Barcilon (1964) used boundary-layer theory to replace the thin Ekman layers 
by modified boundai y conditions on the steady geostrophic solution for inviscid 
fluid. These conditions are equally valid for nonlinear unsteady instability in 
the geostrophic limit, because acceleration and inertia play no role in an Ekman 
layer. Thus, following Barcilon, we may add the viscous terms to the nonlinear 
problem for inviscid fluid. This gives the problem treated by Drazin (1970, 
equations (27), (S), (11)  and (12)) together with extra linear viscous terms in the 
top and bottom boundary conditions, as follows: 

px = 0 at y =  +4h, 

but the zonal average o fp  with respect to x satisfies 

pVt = 0 at y = k4, 

LP = P, - ZPe, + 2 ( W  (W-l Z(PX* + P)yJ 

Here the operator 

the Ekman number 6 = v/2!2(b-a)2 > 0, 

v is the kinematic viscosity of the fluid and Ps is an arbitrary constant at this 
stage (because terms involving P6 cancel identically in equation (1)) but will 
be chosen to be the value of p for given 6, E ,  h and wavenumbers of the dis- 
turbance at  which there is marginal stability; otherwise the notation of Drazin 
(1970) is used, so 

(8) 

It has been judged best to state the problem (l), (2), (3) and (5) without more 
ado, rather than to give its background in a long discussion, repeating points 
covered in the three papers to  which we have already referred and in many other 
papers. However, it may be helpful to say here that the problem is one of 
instability of the basic flow with velocity U = zi and temperature 0 = z-ey 
in the channel with section - 4 < y < 4, - &h < z < &h after choice of dimen- 
sionless quantities based on the length scale (b-a)  and time scale (2SZs)-1. In  
the geostrophic limit as E -f 0, the equations for the perturbations u, v, w, p 
and 6 of velocity, pressure and temperature give equations (1) and (2). The 
boundary conditions of no normal flux on the rigid walls then give equations (3) 
and (5) on taking Ekman layers at  z = f +h. Instability can be seen thereby to 
be governed by the dimensionless numbers p, S and E ,  which is the slope of the 

p = ag(AT) /4W(b - u), etc. 
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isotherms of the basic flow. The approximations of the model are that 
c2 < ($a)* < 1 in order that the flow should be quasi-geostrophic and that the 
thin Ekman layers should be more significant than non-geostrophic effects. 

We may now proceed to use the method of normal mode cascade to find the 
nonlinear self-interaction of one linear mode and the interactions of two linear 
modes. Again, the ideas of this method have been established over the last thirty 
years by Landau, Meksyn, Stuart, Palm, Watson and others (cf. Segel 1966) in 
many problems of hydrodynamic stability, and the details involve a lot of 
algebra, calculus and trigonometry, so we shall suppress much of the work to 
emphasize the results. However, first we shall have to review Barcilon’s linear 
theory to build a foundation for the nonlinear theory. 

2. Linear solution 

solution can be resolved into independent normal modes of the form 
After linearization of equation (1) and the boundary conditions (3)) the 

(9) 

where k is a real wavenumber, l/n is the positive integral number of anti-nodes 
between the vertical walls, Y = y + 4, q 5 4{/3(k2 + Z2)}S, Q and R are arbitrary 
constants and c = c, + ic, is an eigenvalue determining the stability of the mode. 
This interior solution is the same as that for the inviscid problem. However, 
the viscous boundary conditions (5) give 

p = s in 1 Y(Q cash 2qz + R sinh 2 p ) ,  

R 
Q -  s-tanks 

ih + 2ch-ls/3-l tanh s _ -  
and 

c = hP(4s tanh s)-l( - ih( 1 + tanhzs) 

f [ - h2(l + tanh2s)2+ 4h* tanh2s + 4 tanhs(s- tanhs) (s tanhs- l)]*}, (11) 

where s = hq and h E (@)4 (k2 + lZ)/ks. It can be seen that marginal stability, 
arising as kc, + O+,  occurs when c = 0, i.e. the principle of exchange of stabilities 
is valid. The mode is marginally stable if and only if s = 88, where 88 is defined 
as the positive root of 

(s, - tanh $8) (s, tanh s8 - 1) + h2 tanh s, = 0. (12) 

This gives marginal stability for fixed k, I, 6 and e when 

p = /3,(k,E) = 4s;/h2(k2+z2). (13) 

As 6 -+ 0 dong each curve /3 = in the 6-l, /3 plane for fixed h, k and 1, there is 
an upper branch on which 8 8  + 4s;/h2(k2 f 12)  = Po, where so 9 1.2 is the positive 
root of s,tanhs, = 1, and a lower branch on which 66(k2+12) - h2k26,e2. At 
marginal stability, we may write 

h 
s, - tanh 8, 

p = p’ = A(t )  sin ZY cos kx cosh 2q,z - 

37-2 
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FIGURE 1. Curves of marginal stability for modes with k = 1, 2, 3, 4, 5 and I = n. 

Barcilon applied the curves (12) of marginal stability for the modes to the 
instability of a differentially heated, rotating annulus by making the narrow-gap 
approximation that the distance b - a between the outer and inner walls of the 
annulus is much less than the inner radius a. This application of the unbounded 
rectilinear configuration of the stability problem to the bounded cylindrical 
configuration of the annulus renders the wavenumber discrete, such that 

( b + a ) k / 2 ( b - a )  = n =  1,2 ,3 ,  ... (15) 

is the number of waves around the annulus. (The value n = 0 is ignored because 
when k = 0 there is no growth of instability.) Then the curves (12) in the p 
plane have an envelope, along which 1 = 7~ and n varies, marking the transition 
between values of p and 6 a t  which all modes are stable and values at which at  
least one mode is unstable, as shown in figure 1. We have followed Barcilon 
(1964, figure 4) in depicting the curves only for k = n, i.e. bla = 3, but they are 
similar to those for other ratios of the radii. Kaiser (1970) carefully discusses the 
relation between the theoretical curve of marginal stability and experimental 
results, though it is not clear what aspect ratio h he assumes for the theoretical 
curves. 
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3. Self-interaction of a single unstable mode 
In  general one and only one mode is unstable in a flow corresponding to  a point 

of the 6-1, ,8 plane just inside the envelope of marginal stability. So we assume 
that in such a flow the unstable mode will grow exponentially at  first but later 
in accord with its nonlinear self-interaction. All the other modes, being ex- 
ponentially damped, are plausibly negligible for all time. This is the basis for 
the method of normal mode cascade, whereby we shall iterate the solution (14) 
as -+ for fixed 6, B, h, k and 1 .  The iteration is similar to that of Drazin (1970) 
for the inviscid form of the present problem. The analysis is simplified if one 
recognizes at the outset that here a slowly growing nonlinear disturbance will 
be such that A = dA/d t ,  (p-ps) A and A3 are of the same order of magnitude. 
That A and (p-,88) A are of the same order follows from the linear theory, 
because (1 1) gives kc = O(p - p8) as /3 + pa. The nonlinear approximation of the 
third degree in A is necessary to show that A and A3 are of the same order of 
magnitude, but we shall assume this result for the present and conhm it ex post 
facto in equation (33). 

Thus we put p = p'+p"+p,"+ ..., (16) 

where p" is of order A2, p"' of order A3 etc., in order to  iterate the fundamental 
linear solution p' for marginal stability in the full problem ( 1 ) ,  ( 3 )  and ( 5 ) .  This 
gives Kpl = 0, ( 1 7 )  

(19) 

because in fact the right-hand side of condition (19) is independent of x and so 
condition ( 3 b )  applies here. It follows that 

(20) 

u; = 0 a t  y =  k+, ( 2 1 )  

pit = 0 a t  y = ki, (18) 

Lp" = h-lkls,(s8 - tanh s8)-' hA2 sin 21 Y a t  z = & Qh, 

PI1 = P"(Y, z, t ) ,  

at z = f i h .  - 9 41s; A2 sin 21 Y 
- h3p8(s8 - tanh 8 8 )  

Here u'' = -p i  will have to be specified fully at  the next iteration. The product 
of p' and an arbitrary constant could be added to p" without loss of generality, 
by redefinition of the fundamental amplitude A if necessary. 

The next iteration, after some manipula.tion, gives 

sin kx h 
sg - tanh 88 

Lp'" = 2h-ls8pg1 cosh s8A k tanh 88 cos kx - 
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in order that p” be bounded, because otherwise the right-hand side of (23) would 
lead to a particular integral of p”’ growing in x like xp’. Thus (21), (22) and (26) 
determine u”. Seeking a solution that is continuous on the boundary and that 
vanishes with A(t) ,  we find that 

(27) 
m 

C aZj+,sin(2j+1)nY 
h3/3,( s, - tanh s,) = 

sinh ( Z j  + 1) n/3gz 

sinh ( j  + 9) nhpt ’ 
2s: A 2  

U’’ = - 

after some Fourier analysis, where the coefficients of the sine series for 1 - cos 21 Y 
are 

a,j+l = - 2Z2/(j + 8 )  n{(j + & ) 2 n 2  - 12} for j = 0, 1,2,  . . . . (28) 

The inhomogeneous system (23)-(25) is now specified fully. It has a solution 
p”‘ only if the inhomogeneous terms on the right-hand sides satisfy a solubility 
condition. This condition can be found by use of a solution of the adjoint homo- 
geneous system, 

(29) 
h 

s, - tanh s, cos kx cosh 2qg z + 

For one can then easily show that 

on integration by parts and on use of the periodicity in x ;  this becomes 

h2 sinh2 2q, z dz ]  
(sg - tanh s,) 

cosh2 2qg z - { sl”, 0 = h-3k24 ps’ ( p  - pa) A 

2ks,(cosh2 s, + sinh2 sg) h 2 k 2 4  cosh2 s, A3 
+ h3Pg(sg - tanh sg) A + ? ~ 6 / 3 ~ ( s ~  - tanhs,)2 

x (ss,( 1 + tanh2 s, - Zs, tanh sg) + (sg + sg tanh2 s, - 2 tanh sa) 

m 

x C ~ & + ~ ( j  + 4) nh/3$ coth [( j  + 4) n?&]). 
j=O  

Now the Landau equation, A = ClA-C2A3, 

follows on neglect of terms of order A*; here 

(32) 

(33) 

C =  hk(pg-P) {(s,-tanh sg) (s,-ss,taiih2s,+ tanhs,) 
- 4h( 1 -t- tanh2 8,) 

- h2(tanh s, - sg + s, tanh2 sg)}, (34) 

6h2 tanh s, + (s, + s, tanh2 sa - 2 tanh sg) 
kS; 

C =  - h 3 4  l + tanh2 sg) (sg - tanh s,) 
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The linear theory agrees with the Landau equation (33) because (1 I )  gives 
kc, N C, as /3 + Pa. The Landau constant 

as S --f 0, /3 --f /3,, on the upper branch of the curve of marginal stability for the 
mode with given wavenumbers k, 1. Also 

(37) 

as 6 + 0,  ,8 + 0 on the lower branch of the 'marginal curve'. Numerical calcula- 
tions show that C, > 0 all along the marginal curves. It follows now from the 
elementary solution of the Landau equation that there is always supercritical 
instability such that any slightly unstable solution of equation (33) equilibrates, 

C, N 6($6)8 (3k2+Z2)/h% > 0, 

so that 
A -+ A,  = (C1/C2)* as t + +a, 

whatever the initial small amplitude of the disturbance may be. Note that 
A, cc Ip-ps14 is small. 

Equation (2) implies that u" = -p i  depends only upon y, z and t and that 
v = pz = 0. Thus the second harmonic is not excited by second-degree inter- 
actions, which happen only to distort the mean zonal flow in the viscous problem 
as well as the inviscid one (Drazin 1970). 

It If 

4. Interaction of two modes 
We have described how on the marginal envelope for a rotating annulus 

I = n and k increases discontinuously from the upper branch where n = 1 down 
to the lower branch where n -+ 00. Thus there are exceptional points on the 
envelope near which two linear modes are unstable, modes whose numbers n of 
waves differ by unity. Near such an exceptional point the two slightly unstable 
modes and their nonlinear interactions may be significant, but it is plausible 
that all other modes are negligible. So we take here a primary disturbance with 
components of different wavenumbers k, and k, but the same values of h, I, /3 
and S/e2, namely 

where cos kr x cash 2qr z - " sin k, x sinh 2p; x 
s, - tan h s, 

(39) 

(40) 

and A, = A,(t) for r = 1,2. The subscripts are used to specify that a quantity 
is related to one of the distinct wavenumbers k,  and k,. Following the methods 
of 9 3 on self-interaction, one may show that the fundamental (39) gives 

P" = A2,Pll+AlA2Pl2+4P22, (41) 

where pll and p,, can be found from (27), and 

p12 = h-l{sech s+[a+ cos k+ x sinh (2h-4, x )  + b, sin k, x cosh (2h-1 s+ x ) ]  

+ sech s-[a- cos k- x sinh (2h-b- x )  + b- sin k- x cosh (2h-4- z ) ] }  sin 21 Y.  
(42) 
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k, k2 h2P, &2/6 h3C3, h3C32 

1 2 0.373 810 1.39 23.4 
2 3 0.204 252 3.28 18.2 
3 4 0.103 218 10.4 19.2 
4 5 0.051 277 19.0 21.0 
5 6 0.028 400 24.5 25.2 

TABLE 1 

Here k* k, k,, S* &{h2/3ps(k~ + 41'))a (43) 

and the constants a* and b* are found explicitly by substitution into the boundary 
conditions at z = &. It can thence be shown at  length that 

(44) 
A, = C,, A ,  - C,, At - C,, A ,  A;, 

A,  = C,, A ,  - C,, A; - C,, A: A,, 

where C,,, C,,, C,, and C,, can be found from (34) and ( 3 5 ) ,  and the method of 
$ 3  gives 

sz(sl - tanh s,) 
31 - s:(s, - tanh s,) C -  c21 D3ilh (45) 

for a certain constant D,, which can be found in explicit but intricate terms of 
a*, b+ etc. One can find C,, from an expression analogous to (45). 

Fortunately the qualitative behaviour of systems of the form (44) when the 
C's are positive has already been discussed by Segel & Stuart (1962). The solu- 
tions A,(t) and A2(t) are such that either A ,  --f A,,, A, + 0 or A ,  --f 0, A ,  -+ A,, 
as t -+ + 00 according to the initial conditions, where A,, = (Cl,/C,,)4 for r = 1, 2. 
Thus the primary disturbance equilibrates towards one of its components after 
an initial period in which both components grow exponentially. 

The algebraic intricacy of (45) makes it difficult to find the sign of C,, analyti- 
cally. The expression involves essentially five independent parameters, namely 
k,, k,, 1, h2F, and sz/& However, I = IT and there is a given value of s2/8 for each 
h2p, on the marginal envelope; moreover, for an annulus, we are interested in 
those points of the marginal envelope common to wavenumbers k, and k, whose 
ratio is (n + l)/n. So we took k, = n + 1, k, = n and used a computer to evaluate 
C,, and C32 at the points of the marginal envelope where the marginal curves of 
k1 and k, intersect for n = I, 2, 3, 4, 5 and 1 = IT. The results are given in table 1. 
It can be seen that C31 and C32 are positive. Various computations of the co- 
efficients elsewhere in the s2/S, p plane gave positive values near the marginal 
envelope. However, 6'31 may become infinite and then negative where the wave- 
numbers k,, 21 or k-, 21 correspond to a marginally stable linear mode, i.e. where 
there is a second-order resonant interaction. This only happens on the unstable 
side of the marginal envelope, because that envelope corresponds to a single 
value of the wavenumber in the y direction, namely 1 = IT. Now weak nonlinear 
instability only arises near the stability boundary, and therefore our theory is 
not strictly valid where the resonance occurs. 
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There is also a third-order resonant interaction if Jk, k 2k,l = lkll or Ik,], in 
which case the calculation of C31 or C,, must be modified somewhat. We may 
require that k, > k2 > 0 without loss of generality, so that such a resonance may 
occur only if k,/k, = 3. However, in applications to an annulus k,/k,  = (n + l)/n, 
so this resonance never arises and may be ignored. 

We have now justified direct use of the study of Segel & Stuart (1962), and 
conclude that equilibration a t  one or other of the component modes of the 
fundamental occurs, such that the initial preponderance of one component leads 
to the eventual dominance of that component. 

5. Conclusions 
We have extended our earlier work (Drazin 1970) on nonlinear baroclinic 

instability of inviscid fluid by approximation of viscous effects. This led to the 
amplitude equation (33) instead of a time-reversible equation of the form 
A = C, A - C, A3. For an inviscid fluid it is found that 

where 

(All the Fourier series of Drazin (1970) are wrong owing to unjustifiable dif- 
ferentiation term by term.) Thus the form of the Landau equation and the 
Landau constant of the inviscid limit of the present model are very different 
from those of the inviscid model. This difference is due to a non-uniform limit, 
the order of the limits as /3 + /3s and 6 + 0 being significant. Indeed, the linear 
equation (11) gives ci cc 8-4 as p + for fixed 6 + 0 but inviscid theory with 
6 = 0 gives ct well-behaved for all p. 

Pedlosky (1970, 1971) has recently analysed the nature of this singular per- 
turbation for a two-layer basic flow, finding a third-order differential system for 
the amplitude that reduces to the first-order viscous equation or the second- 
order inviscid equation in the appropriate limits. Such a discontinuous velocity 
profile in a slightly viscous fluid strictly needs a correction owing to the Ekman 
layer a t  the interface between the two layers, but this does not modify the 
qualitative stability characteristics (Pedlosky 1970, p. 18). Indeed, the con- 
tinuous profile U = z treated here exhibits instability qualitatively similar to 
that of the two-layer model. 

However, we have emphasized two aspects of particular value in modelling 
experiments on a differentially heated, rotating annulus, the marginal envelope 
and the interaction of two components. With the basic linear flow, which is 
itself the thermal wind associated with the basic temperature field, Barcilon 
(1964) referred stability characteristics to the s2/S, p plane, finding its knee- 
shaped marginal envelope. His representation of viscous effects only by matching 
Ekman suction with inviscid interior flow near the top and bottom walls is 
justifiable in the limit as e + 0 for fixed 6/e2. The vertical velocity in the interior 
is w = O ( E )  as E -+ 0 in the geostrophic limit and is matched with the Ekman 
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suction of velocity w = O(S4) as S+ 0; this gives a correction of order SSle to 
the stability problem. In the interior u, v, 13 = O( 1) as E -+ 0,  so matching of these 
variables gives a correction of order 64, which is negligible. Ageostrophic effects 
in the interior are of order E ,  and are neglected. It happens that the vertical 
velocity of the interior solution vanishes on the side walls in Barcilon’s linear 
solution; so matching of the no-slip conditions gives a correction only of order 84, 
which is negligible. In  our nonlinear problem it can be seen also that 

vanish on the side walls y = -+_ 4, so that the Landau equation (33) includes the 
most significant viscous terms for the given basic flow. The temperature per- 
turbation 8‘ = p; vanishes at  the side walls, y = k Q, so that the linear solution 
corresponds to side walls maintained at  steady temperatures. However, it can 
be seen from (27) that 8“ = p i  does not vanish for all z at y = k $, so a thermal 
boundary layer would arise. This is a weakness of the model for real fluids of 
finite Prandtl number in a channel of bounded cross-section. Solution of the 
appropriate boundary-value problem would lead, with difficulty, to a corrected 
value of the Landau constant C,. One might speculate that this correction would 
increase C,, because the thermal diffusivity would damp the temperature field 
of the disturbance rather than unleash any potential energy from the basic flow 
as the amplitude grew, much as viscosity serves to dissipate the disturbance 
as the amplitude grows so that equilibration ensues. 

In  8 4 we considered the exceptional case where two modes were both slightly 
unstable. Now it is observed that the change from one wavenumber n to the 
next in the rotating annulus as the angular velocity S2 increases occurs at  dif- 
ferent points in the s2/S, pplane according to whether Q is decreasing or increasing. 
There is ‘hysteresis’ whereby a mode is preferred if it has been present earlier in 
time. This is consistent with the interaction of two modes described in 8 4, the 
initial values of the amplitudes of two competing components influencing which 
component the disturbance ultimately equilibrates to. 

Because of the differences between the theoretical and experimental models 
(cf. Hide 1970, p. 203)) some caution is needed in applying theory to experiments, 
and more is necessary for application to the atmosphere. None the less, Eady’s 
model, as developed by Barcilon for viscous fluid and here for nonlinear dis- 
turbances, does provide encouraging comparison with experiments on a dif- 
ferentially heated, rotating annulus. 

I am grateful to Dr M. E. McIntyre for encouragement of this work and to 
Professor J. Pedlosky for criticisms of its development. 
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